Exercise 21

(a) Taking $c=L=1$, plot several snapshots of the vibrating string in Exercise 15. Observe that the point at $x=\frac{1}{2}$ never moves. Prove this last observation.
(b) Find initial data for which the point $x=\frac{1}{3}$ never moves. Show that the point $x=\frac{2}{3}$ is also fixed.

Solution

The initial boundary value problem from Exercise 15 is

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L,-\infty<t<\infty \\
& u(x, 0)=\sin \frac{2 \pi x}{L} \\
& \frac{\partial u}{\partial t}(x, 0)=0 \\
& u(0, t)=0 \\
& u(L, t)=0,
\end{aligned}
$$

and its solution is

$$
u(x, t)=\sin \frac{2 \pi x}{L} \cos \frac{2 \pi c t}{L} .
$$

Below is a plot of u versus x over $0<x<1$ at several times with $c=1$ and $L=1$.

Notice that u is zero at $x=\frac{1}{2}$ at all times. Plug in $c=1$ and $L=1$ and $x=\frac{1}{2}$ in the solution.

$$
u\left(\frac{1}{2}, t\right)=\sin \pi \cos 2 \pi t=0
$$

This is zero regardless of what t is.

The initial value problem for which the solution doesn't move at $x=\frac{1}{3}$ and $x=\frac{2}{3}$ is

$$
\begin{aligned}
& \frac{\partial^{2} v}{\partial t^{2}}=c^{2} \frac{\partial^{2} v}{\partial x^{2}}, \quad 0<x<L,-\infty<t<\infty \\
& v(x, 0)=\sin \frac{3 \pi x}{L} \\
& \frac{\partial v}{\partial t}(x, 0)=0 .
\end{aligned}
$$

Its solution is

$$
v(x, t)=\sin \frac{3 \pi x}{L} \cos \frac{3 \pi c t}{L} .
$$

Below is a plot of v versus x over $0<x<1$ at several times with $c=1$ and $L=1$.

Notice that v is zero at $x=\frac{1}{3}$ and $x=\frac{2}{3}$ at all times. Plug in $c=1$ and $L=1$ and $x=\frac{1}{3}$ in the solution.

$$
v\left(\frac{1}{3}, t\right)=\sin \pi \cos 3 \pi t=0
$$

Plug in $c=1$ and $L=1$ and $x=\frac{2}{3}$ in the solution.

$$
v\left(\frac{2}{3}, t\right)=\sin 2 \pi \cos 3 \pi t=0
$$

These are zero regardless of what t is.

